亚洲国产成人无码AV在线播放,亚洲色偷拍另类无码专区,亚洲AV日韩AV永久无码久久,国产手机在线精品

技術(shù)文章您現(xiàn)在的位置:首頁 > 技術(shù)文章 > Broadpharm基礎(chǔ)篇什么是點擊化學?What is Click Chemistry?

Broadpharm基礎(chǔ)篇什么是點擊化學?What is Click Chemistry?

更新時間:2023-12-06   點擊次數(shù):794次

Click Chemistry is a chemical reaction between pairs of reagents (named click chemistry reagents) to exclusively react with each other under mild conditions and is effectively inert to naturally occurring functional groups such as amine groups. The term "Click Chemistry" was first coined by Sharpless in 2001 in an effort to design a method to easily synthesize molecules under mild conditions and the product can be easily isolated.


Click Chemistry reactions can be categorized into three generations:

(1) Cu(I)-catalyzed Azide-Alkyne Click Chemistry (CuAAC reactions, Figure 1):

Cu catalyzed azide-alkyne click chemistry reactions diagram


The first generation of Click Chemistry involved the reaction of azide with alkyne catalyzed by Cu(I). The copper catalyst allows for this reaction to be carried out efficiently under mild conditions in water whereas the reaction would require high temperature and high pressure without the copper catalyst. Copper catalyzed Click Chemistry has been found to have the second fastest rate constant of 10-100 M-1s-1.

Due to the toxic nature of copper to living structures and biosystems, copper catalyzed Click Chemistry is not a viable method of carrying out reactions in living systems which has led to the development of the following two generations of Click Chemistry.

(2) Strain-promoted Azide-Alkyne Click Chemistry (SPAAC reactions, Figure 2):

DBCO reagent or BCN reagent can be used to perform Click Chemistry with azide molecules without the need of heavy-metal catalysis.


Strain-promoted Azide-Alkyne Click Chemistry reactions diagram

Figure 2: Strain-promoted Azide-DBCO Click Chemistry


The bond strain created by the bond angle of the cyclooctyne (DBCO or BCN) requires less energy for the cyclooctyne to form the (3+2) cycloaddition which releases enthalpic energy caused by the ring strain of the cyclooctyne. This generation does not require copper as a catalyst and it can be used in cell surface and in vivo labeling. The rate constant is 10-2-1 M-1s-1.


(3) Ligation between tetrazine and alkene (trans-Cyclooctene)

Ligation between tetrazine and alkene (trans-Cyclooctene) diagram


The third generation of Click Chemistry is the ligation between tetrazine with trans-Cyclooctene (TCO). The mechanism for this ligation utilizes ring strain from the trans-Cyclooctene and an inverse Diels-Alder reaction between the electron rich trans-Cyclooctene and the electron poor tetrazine. This ligation has been found to be the fastest generation of Click Chemistry thus far with a rate constant of 1-106 M-1s-1. The reaction can also be carried out in vivo in aqueous solution.

Applications of Click Chemistry

Click Chemistry has been widely used in drug discovery, bioconjugation, labeling, and material sciences in the pharmaceutical and biotech industry due to its mild conditions and high selectivity.

Click Chemistry in Drug Discovery

Click Chemistry is utilized in the formation of ADC linkers in antibody drug conjugates. For example, Trodelvy (Sacituzumab Govitecan), also known as IMMU-132 (Figure 4), is an immune target therapy medicine for triple-negative breast cancer which contains sacituzumab and SN-38 bound with a linker. Click Chemistry is used in the formation of the linker to form a triazole that links SMCC to a PEG8 moiety.


structure of trodelvy

Figure 4: Structure of Trodelvy.


Click Chemistry in Joint Cartilage Therapy

Click Chemistry has also been used in cell-based therapy to treat damage in joint cartilage, relieve pain, and improve function. Autologous chondrocyte transplantation targets apoptotic chondrocytes in cartilage which can be identified by a six amino acid peptide, ApoPep-1, and by binding injected healthy chondrocytes from unaffected cartilage. ApoPep-1 carries a trans-Cyclooctene bound by a PEG Linker to apoptotic chondrocytes which can then bind healthy chondrocytes via Click Chemistry to tetrazine to encourage cartilage regeneration (Figure 5).


Diels-Alder diagram



Figure 5: Inverse Diels-Alder Click Chemistry reaction between TCO and tetrazene for joint cartilage therapy


Click Chemistry Tools

As a leading click chemisty reagent supplier worldwide, BroadPharm provides over 500 high purity Click Chemistry Reagents (tools) and Kits with an array of functional groups such as: Azide, Alkyne, DBCO, TCO, Tetrazine, BCN to empower our clients' advanced research and drug development.



靶點科技攜手Broadpharm,最快一周,為您提供點擊化學試劑。授權(quán)代理,正品保證,質(zhì)量無憂,貨期超快,助力您的研究應用。

靶點科技(北京)有限公司

靶點科技(北京)有限公司

地址:中關(guān)村生命科學園北清創(chuàng)意園2-4樓2層

© 2025 版權(quán)所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:294131  站點地圖  技術(shù)支持:化工儀器網(wǎng)  管理登陸

浪荡货老子大吗爽死你h漫画男男| 国产精品久久久久9999高清| 国产自拍视频| 久久久噜噜噜久久中文字幕色伊伊| 韩国精品一区二区三区无码视频 | 国产精品成人无码久久久| 精品一区二区三人妻视频| 被黑人扒开双腿猛进夏科骨科| 欧美精品九九久久久久久久久| 亚洲一线产区二线产区区别在哪里| 午夜福利一区二区三区在线观看| 两男一女两根同进去舒服吗| 四虎影视永久地址WWW成人| 欧美最猛性XXXXX69交| 久久久久国產麻豆无碼av| 嫩模自慰一区二区三区| 麻豆亚洲AV成人无码久久精品| 少妇厨房愉情理9仑片视频| 欧美疯狂性受xxxxx喷水更猛| 黑人60厘米全进去了| 国产精品乱子乱XXXX| 熟女肥臀白浆大屁股一区二区| 办公室玩弄娇喘秘书在线观看 | 18禁止进入1000部高潮网站| 精品久久久久| 小洁和公h文翁17| 久久精品国产精品亚洲| 一本色道久久88综合亚洲精品| 最残忍最另类残虐sm的小说| 囯产精品久久久久久久久蜜桃| 高洁在公车被灌满jing液| 99久久亚洲精品无码毛片| 亚洲日本一线产区二线产区| 99久久99久久精品国产片 | 大j8黑人bbw巨大怪物| 熟妇高潮一区二区三区| 国产强奷伦奷片| 性xxxxfreexxxxxvideo| 老师含紧一点h边做边走| 欧美大尺寸suv欧美| 国产在线|